Lesson 1, Topic 1
In Progress


Dr. Andrew July 18, 2023

1. “An Interview with Steven R. Gundry, M.D., APOE, Alzheimer’s, Diet, Heart,” Dr. Jess Armine. Blog Talk Radio. N.p., 12 Jan. 2015. www.blogtalkradio.com/drjessarmine/2015/01/13/an-interview-with-steven-r-gundry-md-apoe-alzheimers-diet-heart.

2. Nicholson, J.K., E. Holmes, J. Kinross, et al. Host-gut microbiota metabolic interactions. Science. (2012) 336(6086): 1262–7.

3. Nikodejevic, B., S. Senoh, J.W. Daly, et al. Catechol-O-methyltransferase. II. A new class of inhibitors of catechol-o-methyltransferase; 3,5-dihydroxy-4-methoxybenzoic acid and related compounds. J Pharmacol Exp Ther. (1970) 174(1): 83–93.

4. Baldessarini, R.J., and E. Greiner. Inhibition of catechol-O-methyl transferase by catechols and polyphenols. Biochem Pharmacol. (1973) 22(2): 247–56.

5. Dooley, T.P. Cloning of the human phenol sulfotransferase gene family: three genes implicated in the metabolism of catecholamines, thyroid hormones and drugs. Chem Biol Interact. (1998) 109(1–3): 29–41.

6. Maiti, S., S. Grant, S.M. Baker, et al. Stress regulation of sulfotransferases in male rat liver. Biochem Biophys Res Commun. (2004) 323(1): 235–41.

7. Harris, R.M., R.H. Waring. Sulfotransferase inhibition: potential impact of diet and environmental chemicals on steroid metabolism and drug detoxification. Curr Drug Metab. (2008) 9(4): 269–75.

8. Tzin, V., G. Galili. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant. (2010) 3(6): 956–72.

9. Sharon, G., N. Garg, J. Debelius, R. Knight, et al. Specialized metabolites from the microbiome in health and disease. Cell Metabolism. (2014) 20(5): 719–30.

10. Hare, E.E., C.M. Loer. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis. BMC Evolutionary Biology. (2004) 4(1): 24.

11. Penberthy, W.T., I. Tsunoda. The importance of NAD in multiple sclerosis. Current Pharmaceutical Design. (2009) 15(1): 64–99.

12. Gomes, A.P., N.L. Price, A.J. Ling, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. (2013) 155(7): 1624–38.

13. Mendelsohn, A.R., J.W. Larrick. Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels. Rejuvenation Research. (2014) 17(1): 62–9.

14. Lurie, I., Y.X. Yang, K. Haynes, et al. Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. The Journal of Clinical Psychiatry. (2015) 76(11): 1522.

15. Calderone, J. The Rise of All-Purpose Antidepressants. Scientific American website. www.scientificamerican.com/article/the-rise-of-all-purpose-antidepressants/. (2014). Accessed January 26, 2017.

16. Amrhein, N., B. Deus, P. Gehrke, et al. The site of the inhibition of the shikimate pathway by glyphosate II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiology. (1980) 66(5): 830–4.

17. Samsel, A., S. Seneff. Glyphosate, pathways to modern diseases IV: cancer and related pathologies. J. Biol. Phys. Chem. (2015) 15: 121–59.

18. Thongprakaisang, S., A. Thiantanawat, N. Rangkadilok, et al. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol. (2013) 59: 129–36.

19. International Agency for Research on Cancer, World Health Organization website. IARC monographs volume 112: evaluation of five organophosphate insecticides and herbicides. www.iarc.fr/en/media-centre/iarcnews/pdf/MonographVolume112.pdf. (2015). Accessed January 26, 2017.

20. Guyton, K.Z., D. Loomis, Y. Grosse, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. (2015) 16(5): 490–1.

21. Gainza‐Cirauqui, M.L., M.T. Nieminen, L. Novak Frazer, et al. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders. Journal of Oral Pathology & Medicine. (2013) 42(3): 243–9.

22. Marttila, E., P. Bowyer, D. Sanglard, et al. Fermentative 2‐carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Molecular Oral Microbiology. (2013) 28(4): 281–91.

23. O’Brien, P.J., A.G. Siraki, N. Shangari. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Critical Reviews in Toxicology. (2005) 35(7): 609–62.

24. Cho, I., M.J. Blaser. The human microbiome: at the interface of health and disease. Nature Reviews Genetics. (2012) 13(4): 260–70.

25. Yao, H., I. Rahman. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicology and Applied Pharmacology. (2011) 254(2): 72–85.

26. Burke, W.J., S.W. Li, C.A. Schmitt, P. Xia, et al. Accumulation of 3, 4-dihydroxyphenylglycolaldehyde, the neurotoxic monoamine oxidase A metabolite of norepinephrine, in locus ceruleus cell bodies in Alzheimer’s disease: mechanism of neuron death. Brain Research. (1999) 816(2): 633–7.

27. Marchitti, S.A., R.A. Deitrich, V. Vasiliou. Neurotoxicity and metabolism of the catecholamine-derived 3, 4-dihydroxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacological Reviews. (2007) 59(2): 125–50.

28. Zhu, W., D. Wang, J. Zheng, et al. Effect of (R)-salsolinol and N-methyl-(R)-salsolinol on the balance impairment between dopamine and acetylcholine in rat brain: involvement in pathogenesis of Parkinson disease. Clinical Chemistry. (2008) 54(4): 705–12.

29. Waly, M.I., K.K. Kharbanda, R.C. Deth. Ethanol Lowers Glutathione in Rat Liver and Brain and Inhibits Methionine Synthase in a Cobalamin‐Dependent Manner. Alcoholism: Clinical and Experimental Research. (2011) 35(2): 277–83.

30. Barak, A.J., H.C. Beckenhauer, D.J. Tuma. Methionine synthase: a possible prime site of the ethanolic lesion in liver. Alcohol. (2002) 26(2): 65–7.

31. Zakhari, S. Alcohol metabolism and epigenetics changes. Alcohol Res. (2013) 35(1): 6–16.

32. Chen, C.H., J.C. Ferreira, E.R. Gross, et al. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiological Reviews. (2014) 94(1): 1–34.

33. Smolinska, S., M. Jutel, R. Crameri, et al. Histamine and gut mucosal immune regulation. Allergy. (2014) 69(3): 273–81.34. Thurmond, R.L., E.W. Gelfand, P.J. Dunford. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nature Reviews Drug Discovery. (2008) 7(1): 41–53.